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Introduction
In this tutorial we will discuss Lyapunov functions: Lyapunov devised another technique
that can potentially show that an equilibrium is stable - the construction of what is now
called a Lyapunov function. An advantage of this method is that it can sometimes prove
stability of a nonhyperbolic equilibrium; a disadvantage is that there is no straightforward
construction of Lyapunov functions.

Lyapunov functions
Lyapunov functions are nonnegative functions that decrease in time along the orbits of a
dynamical system.

Definition: A continuous function L : Rn → R is a strong Lyapunov function for an
equilibrium x∗ of a flow ϕt on Rn if there is an open neighborhood U of x∗ such that
L(x∗) = 0, L(x)> 0 for x∗ 6= x ∈U , and

L(ϕt(x))< L(x) f or all x ∈U/{x∗} and t > 0. (1)

The function L is a weak Lyapunov function if the strong inequality is replaced by a weak
inequality, L(ϕt(x))≤ L(x).

If L ∈C1, the strong condition is equivalent to the condition dL
dt < 0: If (1) is satisfied,

then for any x ∈U , dL
dt ≡ limt→0

L(ϕt(x))−L(x)
t < 0, and conversely, if dL

dt < 0 then at every
point limt→0

L(ϕt(x))−L(x)
t < 0 so necessarily, since L is continuous, then the first condition

follows.
Using the chain rule:

0 >
dL
dt

= ∇L · ẋ = ∇L · f (x)

so in the smooth case, the condition that L is a Lyapunov function is that its gradient
vector points in a direction opposed to that of the vector field f.

Some intuition: Assume an unstable fixed point x∗= 0 has a trajectory leading out from
it in the infinitesimal region around 0 - a trajectory with x0 infinitesimally close to 0, that
satisfies in some region ||ϕt(x0)|| > ||x0||. Therefore, a function L that satisfies L(0) = 0
and L(x 6= 0)> 0 cannot satisfy L(ϕt(x))< L(x) on this trajectory - this can be visualized
in R2.

Assume L is a strong Lyapunov function for an R2 flow. Recall the gradient of L at
x is always directed in the direction of the greatest increase in L. In R2, this allows for
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some graphical intuition as to what is the Lyapunov function: L̇ < 0 implies that the angle
between the gradient vector and the velocity vector is larger than 90◦. It is fairly intuitive,
at least in R2, that if this is the case everywhere along a phase trajectory then since L itself
is increasing away from the origin (which is the fixed point), then the trajectory will tend
towards the origin, i.e. the origin is a stable fixed point, see Fig. 1, Fig. 2.

Indeed, this can be proved for the general case Rn:

Theorem 4.7 - Lyapunov Functions (M): Let x∗ be an equilibrium point of a flow
ϕt(x). If L is a weak Lyapunov function in some neighborhood U of x∗, then x∗ is stable.
If L is a strong Lyapunov function, then x∗ is asymptotically stable.

Example: Consider the system

f (y,z) =
(

z
−y−2z

)
:

y′ = z
z′ =−y−2z

(2)
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and the function L(y,z) = (y2 + z2)/2. Then x∗ = (0,0) is a fixed point, f (0,0) = 0, and
indeed L(x∗) = 0. Also, L > 0 for x 6= (0,0). Finally, the negative condition is satisfied:
∇L · f = yz+ z(−y−2z) =−2z2 ≤ 0. Therefore x∗ = (0,0) is a stable fixed point.

Proof of stability: Consider a flow ϕt(x) defined by the function f (x) : Rn→Rn, and a
weak Lyapunov function L. Assume without loss of generality x∗ = 0.

We want to prove that for any ε > 0 there exists a δ > 0 such that if x0 < δ then
ϕt(x0)< ε for all times t > 0.

Choose ε > 0 such that the ball of radius ε around the origin is in U . Then, let’s define
m = min||x||=ε L(x). The constant m exists since ||x|| = ε is compact. Since L is positive
definite, m > 0.

From continuity of L and L(0) = 0, there exists some 0 < δ < ε such that for any
||x||< δ , L(x)< m. Choose an initial condition ||x0||< δ . Since L(ϕt(x)) is decreasing,
L(ϕt(x0))< m. We claim this implies ϕt(x0)< ε:

Assume by contradiction that there exists a time t1 such that ϕt1(x0) > ε . Then there
is a time t2 such that ϕt2 = ε , but L(ϕt2)< m = min||x||=ε L, which is a contradiction.

Proof of asymptotic stability: Consider the case that L is a strong Lyapunov function.
Then it is also a weak Lyapunov function and for ||x0||< δ , ϕt(x0)< ε . We need to prove
ϕt(x0)→ 0 for t→ ∞.

Since L is strictly decreasing and non-negative, a sequence {ϕtn(x0)}∞
n=1 has a limit in

the region, L(ϕtn(x0))→ c ≥ 0 when n→ ∞. Assume by contradiction c > 0, and have
z ∈ Bε(0) the point at which this value is acquired. Then L(ϕt(z)) < c, and ϕtn+s(x0)→
ϕt(z). Therefore, for a large enough n, L(ϕtn+s(x0)) < c. Finally, find m > n such that
tm > tn + s to obtain the contradiction.

Example: Any linear system ẋ = Ax that is asymptotically stable has a strong Lyapunov
function, of the form L = xT Sx, where S is a symmetric matrix: Note that L̇ is negative if

ẋT Sx+ xT Sẋ = xT (AT S+SA)x < 0

for all x 6= 0. To solve this, we can require AT S+ SA = −I (called the Lyapunov equa-
tion), and then L̇ = −|x|2 < 0 for x 6= 0. Then this equation always has a solution when
A’s eigenvalues have negative real parts, by S =

´
∞

0 eτAT
eτAdτ . This can be checked by

plugging this S into the Lyapunov equation, multiplying the equation by etAT
from the left

and by etA from the right, and noticing that the left hand side becomes a full derivative.

Finding a Lyapunov function
In general, finding a Lyapunov function for a nonlinear system is a matter of guessing.
However, when the equilibrium is asymptotically stable, a Lyapunov function is guar-
anteed to exist, and therefore the two conditions, asymptotic stability and existence of a
strong Lyapunov function, are equivalent:

Theorem 4.23 (M): If x∗ is an asymptotically stable equilibrium that attracts a neigh-
borhood U , then the function

L(x) =
ˆ

∞

0
e−s sup

t≥s
|ϕt(x)− x∗|ds

is a strong Lyapunov function on U .
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We shall not show the proof.
Although this theorem guarantees that a strong Lyapunov function exists for an asymp-

totically stable equilibrium, it is not possible to construct it using this method unless the
flow can be obtained analytically - in which case there is no reason to find L! However,
there are cases in which it is not hard to find a Lyapunov function and for which stability
is not obvious. You will see some examples in the HW.

Lorenz system - an example for a non-hyperbolic fixed point
The Lorenz system is

ẋ = σ(y− x)
ẏ = rx− y− xz
ż = xy−bz,

(3)

where we assume the parameters r, σ and b are positive. The equilibrium at the origin a
Jacobian with an eigenvalue λ =−b for the eigenvector in the z direction, and two other
eigenvalues determined by

λ
2 +(σ +1)λ +σ(1− r) = 0.

Thus, the origin is attracting when r < 1 but is a saddle when r > 1. We know all this
from linear stability analysis.

What happens if r = 1? Linear analysis cannot tell us. We construct the following
Lyapunov function:

L =
1
2

(
x2

σ
+ y2 + z2

)
,

and we can check that dL
dt =−(x− y)2−bz2. Therefore, L̇ = 0 on the line {x = y,z = 0}

and is not a strong Lyapunov function. So what can we do?
In this case, the LaSalle invariance principle saves us:

Theorem 4.25 (LaSalle’s Invariance Principle): Suppose x∗ is an equilibrium of a
flow ϕt(x), and L a weak Lyapunov function for a neighborhood U of x∗. Let Z = {x∈U :
L̇= 0} be the set where L is not decreasing. Then, if x∗ is the only forward-invariant subset
of Z (i.e. there are no other fixed points, periodic orbits, etc.), then it is asymptotically
stable and attracts every point in U .

An example
The equations for the damped pendulum, in dimensionless variables, can be written in the
following form:

ẋ = y, ẏ =−y− sinx.

(a) Show that the origin is a stable fixed point using the energy function V (x,y) =
1
2y2 +(1− cosx).

Solution:
∇V · f = sinxy+ y(−y− sinx) =−y2 ≤ 0.

(b) Show that the origin is an asymptotically stable fixed point using a ”better” Lya-
punov function V (x,y) = 1

2(x+ y)2 + x2 + 1
2y2 than the energy function.

Solution:

∇V · f = 2xy− y2− (x+2y)sinx≈ 2xy− y2− x2−2xy =−(x2 + y2)< 0.

except if x = y = 0.
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